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The problem of stability under perturbations in terms of two metrics is investigated. Problems of the stability of the equilibrium 
position of a mechanical system with variable mass under perturbations are solved. © 1999 Elsevier Science Ltd. All rights reserved. 

1. Consider a system described by the equations 

= Y( t ,y )+F(t ,y) ,  Y, F E  C(R + xE---> R n) (1.1) 

where R ÷ = [0, +oo[, R n is the n-dimensional space ofy-vectors with norm IlY I1 and E C R ~ is an open 
domain. The function F expresses the action of certain perturbations, so that when there are no such 
perturbations the motion is described by the equations 

= Y(t,y) (1.2) 

It is assumed that the function Yand F satisfy conditions guaranteeing the existence and uniqueness 
of solutions of systems (1.1) and (1.2), y(t) = y(t, to, Yo) isa  solution of system (1.1) and y (t) = y (t, to, 
Y0) is a solution of system (1.2) such that y(t, to, Yo) = Yo, Y (t, to, Yo) = Yo. 

Let K be the class of functions of Hahn type, and let h0 e C (R ~ x E ---> R ÷) and h ~ CI(R ÷ × E 
R ÷) be functions satis+fying the following conditions 

1. inf(h0(t, y), t e R :t = const, y ~ E) = 0, h(t, y) ~ 0; 
2. 3L > 0, 3m e K, such that if ho(t, y) < ~., then h <~ m(ho) <~ m ( t )  (throughout, K is the class of 

functions of Hahn type [1]). 
By introducing the functions h and h0, the problem of stability in terms of two metrics [2] may be 

formulated in the following convenient manner [3]. 

Definition 1.1. System (1.2) is said to be (h0, h)-stable ifV~ > 0 x (Vt0 t> 0) (35 > 0) (Vy0; ho(to, Yo) 
> ~), h(t, y (t)) < eVt >I to). 

Following [3, 4], we introduce the following definitions, corresponding to the definition of stability 
of the trivial solution under constantly acting perturbations [5], setting Sq = {(t, y) ~ R + × E : h(t, y) 
< q}, where q = m(X). 

Definition 1.2. System (1.2) is said to be (h0, h)-stable under constantly acting perturbations (CAP) 
if (Ve > 0)(Vt0/> 0)(35 > 0)(3d > 0) x (Vy0 : ho(to, Yo) < 8) (VF:II F tl< d on Sc), (h(t,y(t)) < eVt >I to). 

Definition 1.3. System (1.2) is said to be strongly (h0, h)-stable under CAP if it is stable in the sense 
of Definition 1.2 and also ( r e  > 0)((Vt0 I> 0)(36 > 0) × (Vrl e]0, e [ ) (3d  1 ~]0,  dD(Vy 0 :ho(to, Yo) < 8) 
(VF : I~FII < dl on S~) (3T > 0), (h(t ,y(t))  < ~Vt >I to + T). 

If the numbers 8, d, dl and T in Definitions 1.1-1.3 are independent of to, we have the respective 
definitions of uniform (ho, h)-stability under CAP.. 

Definition 1.4. System (1.2) is said to be (h0, h)-stable under CAP small on the average if 

(Ve > O)(Vt o >~ O)(VT > 0)(38 > 0: re(S) < e)(3d > 0)(Vy o : h(t o, Yo) < 8) x 

( t,, +r 
× / V F : J  o \  =r sup(ll F(u,y)ll  on S E jdu<d ,  <h(t, y ( t ) )<EVt  >>- to). 
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Definition 1.5. System (1.2) is said to be (h0, h)-stable under integrally small CAP if the condition 
relating to F in Definition 1.1 is defined as 

I t{I +T 1 VF: tJto sup(ll F(u,y) II on S e du < d 

2. We will now apply the method of Lyapunov functions to the problem as formulated. 

Theorem 2.1• Assume that h e CI(R + × E ~ R +) and that a Lyapunov function W = W(t, y, h) 
CI(R + x E x R ÷ ~ R) exists satisfyin.g the following conditions 

1. a(h ) <~ W(t, y, h) <~ (x(t)b(ho), Wfl.2)(t, y, h) <<- -f~W(t, y, h ), V(t,y) e Sq, where a, b ~ K, Gt(t) > 0, 
13 = const = 0; 

2. a number M > 0 exists such that 

Then system (1.1) is (ho, h)-stable under CAP. 

v(t, y) e 

Proof. Given e > 0 and to/> 0, define a number 8 > 0 such that (X(to)b(8) = a(e). For everyy0 e {h0(t0, 
y) < 8} we then find W(to, Yo, h(to, Yo)) < t~(to)b(8) < a(e). 

Lety(t) -- y(t, to, Yo),Yo ~ {ho(to, y) < 8} be the solution of system (1.1) and let W(t) = W(t,y(t), h(t, 
y(t)) be a function defined on this equality. 

We have W(to) < a(e). We will show that if the perturbation F(t,y) satisfies the estimate [[F(t,y)11 < 
aa(e)/(2M), then for all t I> to one has h(t, y(t)) < e. For every such perturbation, we deduce from an 
estimate of the same type as the well-known Malkin relation [5] that 

• • 3W ~W _~ c3h 

i=J ~h i--l u.ri 

Thus, the function W(t) satisfies the differential inequality 

(v(t) ~ -cxw(t) + ace)  

from which it follows that a(h(t, y)(t, to, Yo) ) <~ W(t) < a(e) and accordingly that h(t, y(t, to, Xo) ) ~ e for 
all t I> to. The theorem is proved. 

Theorem 2.2. Assume that instead of Condition 1 of Theorem 2.1, the following condition 
holds 

a(h ) ~ W(t, y, h) <~ b(h ), l~(t, y, h) <~ -c(h )Y(t, y) ~ Sq, where the functions a, b, c e K. 

Then system (1.1) is strongly uniformly (h0, h)-stable under CAP. 
The proof is analogous to that of Theorem 2.1. 

3. Let us consider the above problem on the assumption that the right-hand sides of the unperturbed 
system (1.2) is bounded and satisfies a Lipschitz condition on every compact set K c E. Under these 
conditions, system (1.2) is precompact [6], so that the positive limit set of its solutions is quasi-invariant 
[6]. Using the technique of investigating stability properties on the basis of limit systems and Lyapunov 
functions with sign-definite derivative, proposed in [7, 8], one can also obtain definite results in the 
problem considered here. 

Theorem 3.1. Assume that: 
1. a domain F0 C E, sup (ho(t,y), t >~ 0,y e F0) I> ~. > 0 exists such that the solutions of the perturbed 

system (1.1) in this domain are uniformly bounded by the finite domain F; 
2. the solutions of the unperturbed system (1.2) in F are uniformly bounded by the compact domain 

F1, F0 C_ F C F1 C E; 
3. a Lyapunov function W = W(t, y, h) ~ CI(R + x E x R + ~ R) exists such that 
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a(h) <. W(t ,y ,h)  <~ b(h), ~l.2)(t,y,h) <~ -V( t , y )  <~ 0 

V(t, y) ~ Sq, q = m()~) 

4. for each limit pair (Y, V) to (~, f)) which is maximally invariant relative to the system)) = O(t,y),  
a subset of the set {f)(t,y) = 0} is contained in the set {h(t ,y)  = 0}. 

Then the perturbed system (1.1) is strongly uniformly (h0, h)-stable under CAP. 

Proof. Let us determine the properties of the unperturbed system (1.2). It follows from Condition 3 
of the theorem, first of all, that the set {h(t,y) = 0} is invariant and thus Y(t ,y)  =-- 0 for (t ,y) ~ {h( t ,y  
= 0}. 

Using Conditions 2--4 and following the proof of Theorem 2.4 in [8], we can now prove that the 
unperturbed system (1.2) is uniformly asymptotically (h0, h)-stable and the domain F lies in the domain 
of uniform h-attraction. 

We can now deduce from these properties of system (1.2), proceeding as in the proof of Theorem 
2.1 of [3] or the Inversion Theorem 14.1 of [9], that in the domain F a function W(t, y) exists satisfying 
the conditions of Theorem 2.2. Hence, by Condition 1 of the theorem, the desired result follows• 

Example. The equations of motion of a point mass of variable mass along the Ox axis [10, 11] may 
be expressed as 

(r(t):O = -f( t ,x .:c)-  p(t)g(x) + F(t,x, :c) (3.1) 

where r(t) is the mass of the point, x is its coordinate and the right-hand side of the equation represents 
the action of all possible forces: reactive, frictional, potential and unknown perturbations• 

We reduce Eq. (3.1) to the system 

i-(t) f(t,x,y) 
:c=y, ~ = - - ~ y  r(t) g(x)+Fl(t'x'Y) (3.2) 

and investigate the stability of (3.1) or (3.2) in terms of the two metrics 

/t o =sup(Ixl, lyl), h(t,x, y) = 2 i gxdx + r(-~f ). y 2 
0 p(t) 

Let us assume that the quantities occurring in (2.3) satisfy the conditions: 
1. g(x)x >I 0, g(0) = 0, JXog(x)dx -~ +oo asx ---> +~; 
2. r(t) > O,p(t) > O, 0 < m <- (r(t)+/p(t)) <~ M, (i'(t)/i'(t) + p(t)/p(t)) /> l > 0Vt ~ R+; 
3 . f ( t , x , y )y  >t a( ly  ])V(t ,x,y) ~ R xR~; 
4. the motions of the perturbed system in the domain {IJc01 < H, Ix01 < H > 0} are uniformly bounded. 
Setting the Lyapunov function equal to W = h, we find that its derivative (in the absence ofF1) satisfies 

the estimate W = -a(ly I) ~< 0. Hence, by Theorem 3.1, it follows that under these conditions the motion 
of the point is strongly uniformly (h0, h)-stable under the CAP Fl(t, x, y). 

4. Let us consider the problem of the influence of other types of CAP on (h0, h)-stability. 

Theorem 4.1• Under the assumptions of Theorem 2.2, system (1.2) is uniformly (h0, h)-stable under 
CAP that are small on the average. 

• Theorem 4.2. If the condition imposed in Theorem 2.2 on  ~(1.2) is replaced by the weaker condition 
Wq(. 2)(t,. y, h) ~< 0, with the other assumptions retained, then system (1.2) is uniformly (h0, h)-stable 
under integrally small CAE 

The theorems are derived from Theorem 2.2, proceeding as in the proof of Theorem 4 of [12]. 

Example. The equations of motion of a holonomic mechanical system with N variable masses mr(t) under the 
action of potential, gyroscopic, dissipative and perturbing forces may be written as follows [10, 11] 

d_ , oR 
dt~igili ) ' ÷ ~" quqj ~ - -  - - +  Fi (4.1) j=l Oqi Oqi 
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where ql, q2 . . . . .  qn are generalized coordinates, T = T2 + T1 + To is the kinetic energy, Pi are the reactive forces, 
gij = --gij(t, q) are the coefficients of the gyroscopic forces, OU/&li are the potential forces, 2R = E~,j = lbi/tflj are 
the dissipative forces and Fi are the perturbing forces. 

Let us assume that the kinetic energy of the system, for which OT/Ot = 0, satisfies the relation To + U <~ 0, To 
+ U = 0 for q = 0, the separation and attachment of particles to points of the system are such that 

N 
X m,(V~.v,) ~ o 
r---l 

where rn~ is the variation of the masses of the points of the system, Vr and v, are the relative and translational 
veloeities of the separating and attaching ~omts and (a • b)  denotes the scalar product. . 

Set ho -- sup(It 4 II, I U I), II 4 II 2 -- 42 + 42 + . . .  + 43, h = T2 - To - U. For the derivative IV-- h when there are 
no perturbations Fi we find the limit 

N 
W = - 2 R +  E m,(V~'v,) <~0 

r=l 

By Theorem 4.1, it follows that system (4.1) will be uniformly (h0, h)-stable under integrally small CAP. 
The problem of (h0, h)-stability under perturbations may also be solved by a method based on the principle of 

comparison with a vector-valued Lyapunov function [9, 10, 13]• 
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